Answer:
Mean = 29
S.D = 10.95
NO outlier in the data
Step-by-step explanation:
We are given the following data:
n = 14
Construction Workers: 32, 20, 25, 52, 16, 21, 28, 35, 23, 41, 46, 17, 23, 27
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
Mean = [tex]\frac{406}{14} = 29[/tex]
Standard Deviation =
[tex]\sqrt{\frac{9,+ 81+16+ 529+ 169+ 64+ 1+36+ 36+ 144+ 289+ 144+ 36+ 4}{13}}\\= \sqrt{\frac{1558}{13} } = 10.94[/tex]
Five number summary:
Data = 16,17,20,21,23,23,25,27,28,32,35,41,46,52
Minimum = 16
Maximum = 52
Median = Mean of 25 and 27 = 26
First Quartile = 21
Third Quartile = 35
Interquartile range = [tex]Q_3 - Q_1[/tex] = 35 - 21 = 14
Outliers:
[tex]\text{Lower limit} = Q_1 - (1.5)IQR = 21 - 21 = 0\\\text{Upper limit} = Q_3 + (1.5)IQR = 35 + 21 = 56\\[/tex]
There is no outlier in the data.