An electron moves through a uniform magnetic field given by = Bx+(3.39 Bx). At a particular instant, the electron has velocity = (2.59+4.09) m/s and the magnetic force acting on it is (4.22 × 10-19) N. Find Bx.

Respuesta :

Answer:

[tex]B_x=-0.56 T[/tex]

Step-by-step explanation:

We are given that an electron moves through a uniform magnetic field given by

[tex]B=B_x\hat{i}+3..39 B_x\hat{j}[/tex]

Velocity of electron=[tex]2.59\hat{i}+4.09\hat{j}[/tex]m/s

Magnetic force acting on electron, F=[tex]4.22\times 10^{-19} N[/tex]

We have to find [tex]B_x[/tex]

Charge on electron=q=[tex]-1.6\times 10^{-19}C[/tex]

We know that magnetic force on electron is given by

[tex]F=q\vec{v}\times \vec{B}[/tex]

Substitute the value then we get

[tex]4.22\times 10^{-19}=-1.6\times 10^{-19}(2.59\cdot 3.39B_x-4.09B_x)[/tex]

[tex](8.7801B_x-4.09B_x)=\frac{4.22\times 10^{-19}}{-1.6\times 10^{-19}}[/tex]

[tex]4.6901B_x=-\frac{4.22}{1.6}[/tex]

[tex]B_x=-\frac{4.22}{1.6\times 4.6901}[/tex]

[tex]B_x=-0.56 T[/tex]