[tex]\bf (\stackrel{x_1}{-4}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{6}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{2}}}{\underset{run} {\underset{x_2}{6}-\underset{x_1}{(-4)}}}\implies \cfrac{4}{6+4}\implies \cfrac{4}{10}\implies \cfrac{2}{5}[/tex]
Answer:
M=2/5
Step-by-step explanation:
the formula to find the slope is
m= y-y/x-x.
then you have to use the given number
(x,y), (x,y)=
m=2-6/-4-6
m=-4/-10
m=-2/-5
-×- is equal to positive so the answer is
m=2/5