Answer with Step-by-step explanation:
We are given that two independent tosses of a fair coin.
Sample space={HH,HT,TH,TT}
We have to find that A, B and C are pairwise independent.
According to question
A={HH,HT}
B={HH,TH}
C={TT,HH}
[tex]A\cap B=[/tex]{HH}
[tex]B\cap C[/tex]={HH}
[tex]A\cap C[/tex]={HH}
P(E)=[tex]\frac{number\;of\;favorable\;cases}{total\;number\;of\;cases}[/tex]
Using the formula
Then, we get
Total number of cases=4
Number of favorable cases to event A=2
[tex]P(A)=\frac{2}{4}=\frac{1}{2}[/tex]
Number of favorable cases to event B=2
Number of favorable cases to event C=2
[tex]P(B)=\frac{2}{4}=\frac{1}{2}[/tex]
[tex]P(C)=\frac{2}{4}=\frac{1}{2}[/tex]
If the two events A and B are independent then
[tex]P(A)\cdot P(B)=P(A\cap B)[/tex]
[tex]P(A\cap)=\frac{1}{4}[/tex]
[tex]P(B\cap C)=\frac{1}{4}[/tex]
[tex]P(A\cap C)=\frac{1}{4}[/tex]
[tex]P(A)\cdot P(B)=\frac{1}{2}\cdot \frac{1}{2}=\frac{1}{4}[/tex]
[tex]P(B)\cdot P(C)=\frac{1}{4}[/tex]
[tex]P(A)\cdot P(C)=\frac{1}{4}[/tex]
[tex]P(A)\cdot P(B)=P(A\cap B)[/tex]
Therefore, A and B are independent
[tex]P(B)\cdot P(C)=P(B\cap C)[/tex]
Therefore, B and C are independent
[tex]P(A\cap C)=P(A)\cdot P(C)[/tex]
Therefore, A and C are independent.
Hence, A, B and C are pairwise independent.