In Applied Life Data Analysis (Wiley, 1982), Wayne Nelson presents the breakdown time of an insulating fluid between electrodes at 34kV. The times, in minutes, are as follows: 0.15, 0.75, 0.96, 1.35, 2.87, 3.19, 4.01, 4.62, 4.88, 6.43, 7.41, 8.04, 8.24, 12.86, 31.63, 32.61, 33.98, 36.18, and 72.83. Calculate the sample mean and sample deviation of the breakdown data.

Respuesta :

Answer:

Mean = 14.3679

S.D = 18.83

Step-by-step explanation:

We are given the following data:

Time(minute)          

0.15,0.75,0.96,1.35,2.87,3.19,4.01,4.62,4.88,6.43,7.41,8.04,8.24,12.86,31.63,32.61,33.98,36.18,72.83

Formula:

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observations}}[/tex]

[tex]= \displaystyle\frac{272.99}{19} = 14.3679[/tex]

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i - \bar{x})^2}{n-1}}[/tex], where n is the total number of observations.

Sum of square of diffrences = 6386.57

S.D = [tex]\sqrt{\displaystyle\frac{6386.57}{18}} = 18.83[/tex]