Answer:
Mean = 14.3679
S.D = 18.83
Step-by-step explanation:
We are given the following data:
Time(minute)
0.15,0.75,0.96,1.35,2.87,3.19,4.01,4.62,4.88,6.43,7.41,8.04,8.24,12.86,31.63,32.61,33.98,36.18,72.83
Formula:
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observations}}[/tex]
[tex]= \displaystyle\frac{272.99}{19} = 14.3679[/tex]
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i - \bar{x})^2}{n-1}}[/tex], where n is the total number of observations.
Sum of square of diffrences = 6386.57
S.D = [tex]\sqrt{\displaystyle\frac{6386.57}{18}} = 18.83[/tex]