Answer:
The coefficient of static friction is 0.524
Solution:
As per the question:
Angle made with the horizontal, [tex]\theta = 15^{\circ}[/tex]
Acceleration of the truck, a = 2.69[tex]m/s^{2}[/tex]
Now,
Forces are balanced along the x- direction:
When the block sits at rest and is about to slide:
[tex]F_{s} - mgsin\theta = 0[/tex] (1)
Also, static force of friction, [tex]F_{s}[/tex]:
[tex]F_{s} = \mu_{s}N[/tex]
where
N = mgcos[tex]\theta[/tex]
Thus
[tex]F_{s} = \mu_{s}mgcos\theta[/tex] (2)
Now, from eqn (1) and eqn (2):
[tex]\mu_{s}mgcos\theta - mgsin\theta = 0[/tex]
[tex]\mu_{s} = tan\theta[/tex]
Also,
a = [tex]\mu_{s}gcos\theta - gsin\theta[/tex]
[tex]\frac{2.69}{9.8} = \mu_{s}cos15^{\circ} - sin15^{\circ}[/tex]
[tex]0.2745 + 0.2588 = \mu_{s}cos15^{\circ}[/tex]
[tex]0.506 = \mu_{s}cos15^{\circ}[/tex]
[tex]\mu_{s} = 0.524[/tex]