M is the midpoint of line segment AB. If the coordinates of M are (2, 6) and the coordinates of B are (5, 10), which of the following represents the coordinates of point A?

Respuesta :

Answer:

The coordinates are A(-1,2)

Step-by-step explanation:

we know that

The formula to calculate the midpoint between two points is equal to

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

In this problem we have

[tex]M(2,6)\\A(x_1,y_1)[/tex]

[tex]B(x_2,y_2) ---> B(5,10)[/tex]

substitute the given values

[tex](2,6)=(\frac{x_1+5}{2},\frac{y_1+10}{2})[/tex]

Solve for [tex]x_1[/tex]

[tex]2=(x_1+5)/2\\4=x_1+5\\x_1=4-5=-1[/tex]

Solve for [tex]y_1[/tex]

[tex]6=(y_1+10)/2\\12=y_1+10\\y_1=12-10=2[/tex]

therefore

The coordinates are A(-1,2)