contestada

In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 68.0 m/s. The driver of the Thunderbird realizes that she must make a pit stop, and she smoothly slows to a stop over a distance of 250 m. She spends 5.00 s in the pit and then accelerates out, reaching her previous speed of 68.0 m/s after a distance of 420 m. At this point how far has the Thunderbird fallen behind the Mercedes Benz, which has continued at a constant speed?

Respuesta :

Answer:

1010 m

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

[tex]v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-68^2}{2\times 250}\\\Rightarrow a=-9.248\ m/s^2[/tex]

[tex]v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-68}{-9.248}\\\Rightarrow t=7.35\ s[/tex]

Time taken by the thunderbird to stop is 7.35 seconds

Time the thunderbird was at the pit is 5 seconds

[tex]v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{68^2-0^2}{2\times 420}\\\Rightarrow a=5.5\ m/s^2[/tex]

[tex]v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{68-0}{5.5}\\\Rightarrow t=12.36\ s[/tex]

Time taken to accelerate back to 68 m/s is 12.36 seconds

Total time to this point is 7.35+5+12.36 = 24.71 seconds

The Mercedes Benz is moving at a constant velocity hence it has no acceleration and we use the formula

Distance = Speed × Time

⇒Distance = 68 × 24.71 = 1680 m

The thunderbird has covered 250+420 = 670 m

So, the distance between them is 1680-670 = 1010 m