Answer:
P ( 500<X<650 ) = 0.8577
Step-by-step explanation:
Since μ=572 and σ=51 we have:
P ( 500<X<650 ) = P ( 500−572< X−μ<650−572 )
[tex]\RightarrowP ( \frac{500-572}{51} < \frac{x-\mu}{\sigma} < \frac{650-572}{51})[/tex]
⇒ P ( 500<X<650 ) = P ( −1.41<Z<1.53 )
Now, Using the standard normal table to conclude that:
P ( −1.41< Z <1.53 ) = 0.8577