contestada

In a compression test, a steel test specimen (modulus of elasticity = 30 x 106lb/in2) has a starting height= 2.0 in and diameter = 1.5 in. The metal yields (0.2% offset) at a load = 140,000 lb. At a load of 260,000 lb, the height has been reduced to 1.6 in. Determine (a)yield strength and (b) flow curve parameters (strength coefficient and strain-hardening exponent). Assume that the cross-sectional area increases uniformly during the test.

Respuesta :

Answer:

Explanation:

A) we know that volume is given as V

[tex]V  =\frac{\pi}{4} D^2 h[/tex]

where D = 1.5 in , h = 2.0 in

so [tex]V = \frac{\pi}{4} 1.5^2\times 2 = 3.53in^3[/tex]

[tex]Area =\frac{\pi}{4} D^2 = \frac{\pi}{4} \times 1.5^2 = 1.76 in^4[/tex]

yield strenth is given as[tex] \sigma_y = \frac{force}{area} = \frac{140,000}{1.76}[/tex]

[tex]\sigma_y = 79.224 ksi[/tex]

b)

elastic strain[tex] \epsilon = \frac{\sima_y}{E} = \frac{79.224}{30\times 10^3} = 0.00264[/tex]

strain offsets  = 0.00264 + 0.002 = 0.00464     [where 0.002 is offset given]

[tex]\frac{\delta}{h} = 0.00464[/tex]

[tex]\frac{h_i -h_o}{h_o} = 0.00464[/tex]

[tex]h_i = 2\times(1-0.00464) = 1.99 inch[/tex]

area [tex]A = \frac{volume}{height} = \frac{3.534}{1.9907} = 1.775 in^2[/tex]

True strain[tex] \sigma = \frac{force}{area} = \frac{140,000}{1.775 in^2} = 78,862 psi[/tex]

At P= 260,000 lb ,[tex] A = \frac{3.534}{1.6} = 2.209 inc^2[/tex]

true stress [tex]\sigma  = \frac{260,000}{2.209} = 117,714 psi[/tex]

true strain [tex]\epsilon = ln\frac{2}{1.6} = 0.223[/tex]

flow curve is given as \sigma = k\epsilon^n

[tex]\sigma_1 = 78,862 psi[/tex]

[tex]\epsilon_1 = 0.00464[/tex]

[tex]\sigma_2 = 117,714 psi[/tex]  

[tex]\epsilon_2 = 0.223[/tex]

so flow curve is

[tex]78,868 = K 0.00464^n[/tex] .........1

[tex]117,714 = K 0.223^n[/tex]   .........2

Solving 1 and 2

we get

n = 0.103

and K =137,389 psi

Strength coffecient = K = 137.389ksi

strain hardening exponent = n = 0.103