Respuesta :

Simplification of [tex]\frac{\tan 9 x-\tan 5 x}{1+\tan 9 x \tan 5 x}[/tex]  is tan⁡ 4x

Solution:

By using sum-difference formula for tangent,  

Tangent of difference between two angles is written as,

[tex]\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}(\text { Equation } 1)[/tex]

By comparing the above equation 1 with [tex]\frac{\tan 9 x-\tan 5 x}{1+\tan 9 x \tan 5 x}[/tex]   ,  

we get x = 9x and y = 5x

By substituting  x =  9x and y = 5x in equation 1,

[tex]\begin{array}{l}{\tan (9 x-5 x)=\frac{\tan 9 x-\tan 5 x}{1+\tan 9 x \tan 5 x}} \\\\ {\tan (4 x)=\frac{\tan 9 x-\tan 5 x}{1+\tan 9 x \tan 5 x}} \\\\ {\text { Therefore, } \frac{\tan 9 x-\tan 5 x}{1+\tan 9 x \tan 5 x}=\tan 4 x}\end{array}[/tex]

Hence by using difference formula for tangent,  [tex]\frac{\tan 9 x-\tan 5 x}{1+\tan 9 x \tan 5 x}[/tex]  is simplified as tan⁡4x