Answer: The temperature of the ideal gas is [tex]2.75\times 10^2K[/tex]
Explanation:
To calculate the temperature, we use the equation given by ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = Pressure of the gas = 142,868 Pa = 142.868 kPa (Conversion factor: 1 kPa = 1000 Pa)
V = Volume of gas = 1.0000 L
n = number of moles of ideal gas = 0.0625 moles
R = Gas constant = [tex]8.31\text{L kPa }mol^{-1}K^{-1}[/tex]
T = temperature of the gas = ?
Putting values in above equation, we get:
[tex]142.868kPa\times 1.0000=0.0625mol\times 8.31\text{L kPa }mol^{-1}K^{-1}\times T\\\\T=275K=2.75\times 10^2K[/tex]
Hence, the temperature of the ideal gas is [tex]2.75\times 10^2K[/tex]