The intersection angle of a 3 degree curve is 45.2 degrees. What is the length of the curve? of Select one: O a. 455 m O b.573 m C. 452 m O d. 25.9 km

Respuesta :

Explanation:

Relation between length of a curve and angle is as follows.

               l = [tex]R \times \Theta[/tex]

where,   R = radius of curve

         [tex]\Theta[/tex] = angle in radians

Also,     l = [tex]R \times \Theta \times \frac{\pi}{180}[/tex]  .......... (1)

If curve has a degree of curvature [tex]D_{a}[/tex] for standard length s, then

               R = [tex]\frac{s}{D_{a}} \times \frac{180}{\pi}[/tex]   ........... (2)

Now, substitute the value of R from equation (2) into equation (1) as follows.

               l = [tex]\frac{s \times \Theta}{D_{a}}[/tex]  

If s = 30 m, then calculate the value of l as follows.

                 l = [tex]\frac{s \times \Theta}{D_{a}}[/tex]  

                   = [tex]30 \times \frac{45.2}{3}[/tex]              

                   = 452 m

thus, we can conclude that the length of the curve is 452 m.