Answer:
i) 0,7 molH20/s
ii)11,2 g O/s
iii)1,4 g H/s
Explanation:
i) To find the molar flow rate of water, we just convert the mass of water to moles of water using its molecular weight(g/mol) and changing to the proper units (lb to grames and hours to seconds):
[tex]100 \frac{lb}{h}*\frac{453,5g}{1 lb}*\frac{1molH20}{18,016g}*\frac{1h}{3600s}=0,7\frac{molH20}{s}[/tex]
ii) Now we just consider the oxygen in the water stream (for 1 mole of water there is 1 mole of oxygen):
[tex]100\frac{lb}{h} *\frac{453,5g}{1lb}*\frac{1 molH20}{18,016g}*\frac{1molO}{1molH20}*\frac{16gr}{1molO}*\frac{1h}{3600s}=11,2\frac{gO}{s}[/tex]
iii)Just considering the hydrogen in the stream (for 1 mole of water there is 2 moles of hydrogen):
[tex]100\frac{lb}{h} *\frac{453,5g}{1lb}*\frac{1 molH20}{18,016g}*\frac{2molH}{1molH20}*\frac{1gr}{1molH}*\frac{1h}{3600s}=1,4\frac{gH}{s}[/tex]