Which ordered pairs are solutions to the inequality V – 2x <
-3?
Select each correct answer.

Answer:
The solutions presented in the choice are (5,-3) and (1,-1).
Step-by-step explanation:
You could plug the points in and see which satisfies the inequality (makes the inequality true).
So the inequality is:
[tex]y-2x \le -3[/tex]
Let's check (x,y)=(0,-2):
[tex]-2-2(0) \le -3[/tex]
[tex]-2 \le -3[/tex] is false since -2 is more than -3.
Let's check (x,y)=(-6,-3):
[tex]-3-2(-6) \le -3[/tex]
[tex]-3+12 \le -3[/tex]
[tex]9 \le -3[/tex] is false since 9 is more than -3.
Let's check (x,y)=(5,-3):
[tex]-3-2(5) \le -3[/tex]
[tex]-3-10 \le -3[/tex]
[tex]-13 \le -3[/tex] is true.
Let's check (x,y)=(7,12):
[tex]12-2(7) \le -3[/tex]
[tex]12-14 \le -3[/tex]
[tex]-2 \le -3[/tex] is false since -2 is more than -3.
Let's check (x,y)=(1,-1):
[tex]-1-2(1) \le -3[/tex]
[tex]-1-2 \le -3[/tex]
[tex]-3 \le -3[/tex] is true since -3=-3.
So the solutions presented in the choice are (5,-3) and (1,-1).