Respuesta :

Answer :

(a) The energy of blue light (in eV) is 2.77 eV

(b) The wavelength of blue light is [tex]4\times 10^{-5}cm[/tex]

Explanation:

The relation between the energy and frequency is:  

[tex]Energy=h\times Frequency[/tex]

where,

h = Plank's constant = [tex]6.626\times 10^{-34}J.s[/tex]

Given :

Frequency = [tex]670THz=670\times 10^{12}s^{-1}[/tex]

Conversion used :

[tex]1THz=10^{12}Hz\\1Hz=1s^{-1}\\1THz=10^{12}s^{-1}[/tex]

So,  

[tex]Energy=(6.626\times 10^{-34}J.s)\times (670\times 10^{12}s^{-1})[/tex]

[tex]Energy=4.44\times 10^{-19}J[/tex]

Also,  

[tex]1J=6.24\times 10^{18}eV[/tex]

So,  

[tex]Energy=(4.44\times 10^{-19})\times (6.24\times 10^{18}eV)[/tex]

[tex]Energy=2.77eV[/tex]

The energy of blue light (in eV) is 2.77 eV

The relation between frequency and wavelength is shown below as:

[tex]Frequency=\frac{c}{Wavelength}[/tex]

Where,

c = the speed of light = [tex]3\times 10^8m/s[/tex]

Frequency = [tex]670\times 10^{12}s^{-1}[/tex]

So, Wavelength is:

[tex]670\times 10^{12}s^{-1}=\frac{3\times 10^8m/s}{Wavelength}[/tex]

[tex]Wavelength=\frac{3\times 10^8m/s}{670\times 10^{12}s^{-1}}=4\times 10^{-7}m=4\times 10^{-5}cm[/tex]

Conversion used : [tex]1m=100cm[/tex]

The wavelength of blue light is [tex]4\times 10^{-5}cm[/tex]