What is the value for the radius r for a n= 6 Bohr orbit electron in A (14 = 0.1 nm) Required precision = 2% Sanity check: answers should be between 0 and 20.

Respuesta :

Explanation:

It is known that [tex]mv_{r} = \frac{nh}{2p}[/tex]

where,      m = mass of the electron

                 r = radius of the orbit

                 [tex]v_{r}[/tex] = orbital speed of the electron

Equation when the electron is experiencing uniform circular motion is as follows.

            [tex]\frac{Kze^{2}}{r^{2}} = \frac{mv^{2}}{r}[/tex] ........ (1)

Rearranging above equation, we get the following.

                        [tex]mv^{2} = \frac{Kze^{2}}{r}[/tex]

Also,         v = [tex]\frac{nh}{2pmr}[/tex] .......... (2)

Putting equation (2) in equation (1) we get the following.

                [tex]\frac{mn^{2}h^{2}}{4p^{2}m^{2}r^{2}} = \frac{Kze^{2}}{r}[/tex]

Hence, formula for radius of the nth orbital is as follows.

                 [tex]r_{n} = [\frac{h^{2}}{4p^{2}mKze^{2}}]n^{2}[/tex]

                   [tex]r_{n} = [5.29 \times 10^{-11}m] \times (6)^{2}[/tex]

                             = [tex]19.044 \times 10^{-10} m[/tex]

                             = [tex]19.044 A^{o}[/tex]

Thus, we can conclude that the value for the radius r for a n= 6 Bohr orbit is [tex]19.044 A^{o}[/tex].