Respuesta :

Answer:

[tex]\rho_s=\frac{\rho_w}{\frac{wt1}{SpGr1}+\frac{wt2}{SpGr2}}[/tex]

The only other data you need is the density of water ρw.

Explanation:

We can start by the volume balance

[tex]V_s=V_1+V_2[/tex]

We can replace the volumes with V=M/ρ

[tex]\frac{M_s}{\rho_s}=\frac{M_1}{\rho_1}+\frac{M_2}{\rho_2}[/tex]

If we divide every term by Ms

[tex]\frac{M_s/M_s}{\rho_s}=\frac{M_1/M_s}{\rho_1}+\frac{M_2/M_s}{\rho_2}[/tex]

By definition, wt=Mi/Msol, so we can replace that in the expression

[tex]\frac{1}{\rho_s}=\frac{wt1}{\rho_1}+\frac{wt2}{\rho_2}[/tex]

Then we have the expression of the density of the solution

[tex]\rho_s=\frac{1}{\frac{wt1}{\rho_1}+\frac{wt2}{\rho_2}}[/tex]

To replace ρ1 and ρ2, you have to multiply the specific gravity of the components and the density of water.

[tex]\rho_s=\frac{1}{\frac{wt1}{SpGr1\rho_w}+\frac{wt2}{SpGr2\rho_w}}\\\\\rho_s=\frac{\rho_w}{\frac{wt1}{SpGr1}+\frac{wt2}{SpGr2}}[/tex]