Components A and B form ideal solution. At 350 K, a liquid mixture containing 40% (mole) A is in equilibrium with a vapour containing 70% (mole) A. If the vapour pressure of A at 350 K is 70 kPa, what is the vapour pressure of B? (b) 20 kPa (d) 12 kPa (а) 25 kPa (c) 40 kPa

Respuesta :

Answer : The correct option is, (b) 20 kPa

Explanation :

The Raoult's law for liquid phase is:

[tex]p_A=x_A\times p^o_A[/tex]     .............(1)

where,

[tex]p_A[/tex] = partial vapor pressure of A

[tex]p^o_A[/tex] = vapor pressure of pure substance A

[tex]x_A[/tex] = mole fraction of A

The Raoult's law for vapor phase is:

[tex]p_A=y_A\times p_T[/tex]      .............(2)

where,

[tex]p_A[/tex] = partial vapor pressure of A

[tex]p_T[/tex] = total pressure of the mixture

[tex]y_A[/tex] = mole fraction of A

Now comparing equation 1 and 2, we get:

[tex]x_A\times p^o_A=y_A\times p_T[/tex]

[tex]p_T=\frac{x_A\times p^o_A}{y_A}[/tex]    ............(3)

First we have to calculate the total pressure of the mixture.

Given:

[tex]x_A=0.4[/tex] and [tex]x_B=1-x_A=1-0.4=0.6[/tex]

[tex]y_A=0.7[/tex] and [tex]y_B=1-y_A=1-0.7=0.3[/tex]

[tex]p^o_A=70kPa[/tex]

Now put all the given values in equation 3, we get:

[tex]p_T=\frac{0.4\times 70kPa}{0.7}=40kPa[/tex]

Now we have to calculate the vapor pressure of B.

Formula used :

[tex]x_B\times p^o_B=y_B\times p_T[/tex]

[tex]p^o_B=\frac{y_B\times p_T}{x_B}[/tex]

Now put all the given values in this formula, we get:

[tex]p^o_B=\frac{0.3\times 40kPa}{0.6}=20kPa[/tex]

Therefore, the vapor pressure of B is 20 kPa.