Answer:
[tex]\sigma_y\ =210.2\ MPa[/tex]
Explanation:
Given that
d= 35 μm ,yield strength = 163 MPa
d= 17 μm ,yield strength = 192 MPa
As we know that relationship between diameter and yield strength
[tex]\sigma_y=\sigma_o+\dfrac{K}{\sqrt d}[/tex]
[tex]\sigma_y\ =Yield\ strength[/tex]
d = diameter
K =Constant
[tex]\sigma_o\ =material\ constant[/tex]
So now by putting the values
d= 35 μm ,yield strength = 163 MPa
[tex]163=\sigma_o+\dfrac{K}{\sqrt 35}[/tex] ------------1
d= 17 μm ,yield strength = 192 MPa
[tex]192=\sigma_o+\dfrac{K}{\sqrt 17}[/tex] ------------2
From equation 1 and 2
[tex]192-163=\dfrac{K}{\sqrt 17}-\dfrac{K}{\sqrt 35}[/tex]
K=394.53
By putting the values of K in equation 1
[tex]163=\sigma_o+\dfrac{394.53}{\sqrt 35}[/tex]
[tex]\sigma_o\ =96.31\ MPa[/tex]
[tex]\sigma_y=96.31+\dfrac{394.53}{\sqrt d}[/tex]
Now when d= 12 μm
[tex]\sigma_y=96.31+\dfrac{394.53}{\sqrt 12}[/tex]
[tex]\sigma_y\ =210.2\ MPa[/tex]