Please consider 1 kg of NH3 that was compressed from 2.5 bar and 30°C to 5.0 bar in a well-insulated compressor. Please determine the (a) final temperature in C and (b) the work required in kJ.

Respuesta :

Explanation:

(a)   The given data is as follows.

               mass = 1 kg = 1000 g        (as 1 kg = 1000 g)

          Molar mass of [tex]NH_{3}[/tex] = 17 g/mol

           [tex]P_{1}[/tex] = 2.5 bar = [tex]2.5 \times 10^{5} Pa[/tex]    (as 1 bar = [tex]10^{5} Pa[/tex])

            [tex]P_{2}[/tex] = 5 bar = [tex]5 \times 10^{5} Pa[/tex]

          [tex]T_{1} = 30^{o}C[/tex] = 30 + 273 = 303 K

For adiabatic process,   [tex]PV^{\gamma}[/tex] = constant = k

             [tex]\gamma[/tex] = 1.33 = [tex]\frac{C_{p}}{C_{v}}[/tex]        

              [tex]P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}[/tex]

                [tex](\frac{V_{2}}{V_{1}})^{\gamma} = \frac{P_{1}}{P_{2}}[/tex]

        [tex]\frac{V_{2}}{V_{1}} = (\frac{P_{1}}{P_{2}})^{\frac{1}{\gamma}}[/tex]

    [tex]V_{2} = (\frac{2.5 \times 10^{5}}{5 \times 10^{5}})^{\frac{1}{1.33}} \times \frac{nRT_{1}}{P_{1}}[/tex]            (as PV = nRT)

                 = [tex](\frac{2.5}{5})^{\frac{1}{1.33}} \times \frac{58.82 \times 8.314 J/mol K \times 303 K}{2.5 \times 10^{5}}[/tex]

                = 0.352 [tex]m^{3}[/tex]

Also,       w = [tex]\frac{P_{1}V_{1} - P_{2}V_{2}}{\gamma - 1}[/tex]

                  = [tex]\frac{2.5 \times 10^{5} \times 0.5927 - 5 \times 10^{5} \times 0.352}{1.33 - 1}[/tex]

                  = -84318.2 J

As 1 kJ = 1000 J. So, -84318.2 J = -84.318 kJ

Hence, the work required in kJ is -84318.2 J.

(b)    It is known that for adiabatic system Q = 0,

                           [tex]\Delta U = Q - w[/tex]

                          [tex]nC_{v}dT[/tex] = -w

                             dT = [tex]\frac{-w}{nC_{v}}[/tex]

                                  = [tex]\frac{84318.2}{58.82 \times 1.6}[/tex]

                                  = 895.93 K

We known that dT = [tex]T_{1} - T_{2}[/tex]

so,                   895.93 = 303 K - [tex]T_{2}[/tex]                            

                         [tex]T_{2}[/tex] = (895.93 - 303)K

                                     = 592.93 K

                                     = (592.93 - 273.15)^{o}C

                                     = [tex]319.78^{o}C[/tex]

Hence, the final temperature is [tex]319.78^{o}C[/tex].