Liquid dimethyl disulfide (CH3SSCH3) flows through a pipe with a mass flow rate of 86.0 g's. Given that the density of dimethyl disulfide is 1.0625 g/cm, find: The molar flow rate in molimin: Number mol/min The volumetric flow rate in L/hr.

Respuesta :

Explanation:

Molar mass of [tex]CH_{3}SSCH_{3}[/tex] is 94 g/mol. As it is known that number of moles is equal to mass of a substance divided by its molar mass.

Then, calculate the number of moles as follows.

     No. of moles = [tex]\frac{86.0 g}{94 g/mol}[/tex] in 1 s

                           = 0.914 mol

So, in 60 sec number of moles will be equal to 0.914 x 60 = 54.89 mol/min.

Hence, the molar flow rate = 54.89 mol/min

Also, density is equal to mass of a substance divided by its volume.

                    Density = [tex]\frac{mass}{volume}[/tex]

                      Volume = [tex]\frac{mass}{Density}[/tex]

                                     = [tex]\frac{86.0 g}{1.0625 g/cm^{3}}[/tex]

                                     = 80.941 [tex]cm^{3}[/tex]

As, 80.941 [tex]cm^{3}[/tex] of volume flows in 1 s . Therefore, flow of volume in 1 hour will be calculated as follows.

                 In 1 hr = 80.941 [tex]cm^{3} \times 3600[/tex]

                            = 291388.24 [tex]cm^{3}/hr[/tex]

Since, 1 [tex]cm^{3}[/tex] = 0.001 L.

So,              291388.24 [tex]cm^{3}/hr \times 0.001 L/cm^{3}[/tex]

                            = 291.38824 L/hr

Thus, we can conclude that molar flow rate in mol/min is 54.89 mol/min and the volumetric flow rate in L/hr is 291.38824 L/hr.