Respuesta :

Answer:

[tex]t=1\frac{1}{3}[/tex]

Step-by-step explanation:

we have

[tex]22t=32(2\frac{1}{4}-t)[/tex]

Solve for t

That means ----> isolate the variable t

Convert mixed number to an improper fraction first

[tex]2\frac{1}{4}=\frac{2*4+1}{4}=\frac{9}{4}[/tex]

substitute

[tex]22t=32(\frac{9}{4}-t)[/tex]

Multiply by 4 both sides to remove the fraction

[tex]88t=32(9-4t)[/tex]

Distribute right side

[tex]88t=288-128t[/tex]

Adds 128t both sides

[tex]88t+128t=288[/tex]

[tex]216t=288[/tex]

Divide by 216 both sides

[tex]t=\frac{288}{216}[/tex]

Simplify

[tex]t=\frac{4}{3}[/tex]

Convert to mixed number

[tex]\frac{4}{3}=\frac{3}{3}+\frac{1}{3}=1\frac{1}{3}[/tex]

therefore

[tex]t=1\frac{1}{3}[/tex]