Respuesta :

Explanation:

Expression for vertical fluid pressure is as follows.

               [tex]\frac{dP}{dh} = \rho \times g[/tex] ........... (1)

where,     p = pressure

            [tex]\rho[/tex] = density

               g = acceleration due to gravity

               h = height

Since, g is negative then it means that an increase in height will lead to decrease in pressure.

Also, expression for density according to ideal gas law is as follows.

                 [tex]\rho = \frac{mP}{kT}[/tex] .......... (2)

where,         m = average mass or air molecule

                    P = pressure at a given point

                    k = Boltzmann constant

                    T = temperature in kelvin

Substituting values from equation (2) into equation (1) as follows.

              [tex]\frac{dP}{dh} = \rho \times g[/tex]

              [tex]\frac{dP}{dh} = \frac{mP}{kT} \times g[/tex]

               [tex]\frac{dP}{P} =  \frac{mg}{kT}dh[/tex]

Now, on applying integration on both the sides we get the following.

                    [tex]ln\frac{P_{h}}{P^{o}} = \frac{-mgh}{kT}[/tex]

or,                          [tex]P_{h} = P_{o}e^{\frac{-mgh}{kT}}[/tex]                    

where,           [tex]P_{h}[/tex] = pressure at height h

                      [tex]P_{o}[/tex] = pressure at reference point    

Thus, we can conclude that the correlation between pressure and elevation for an ideal gas is  [tex]P_{h} = P_{o}e^{\frac{-mgh}{kT}}[/tex].