A π_ ("pi-minus") particle, which has charge _e, is at location ‹ 4.00 10-9, -3.00 10-9, -6.00 10-9 › m. What is the electric field at location < -3.00 10-9, 2.00 10-9, 4.00 10-9 > m, due to the π_ particle?

Respuesta :

Answer:

The electric field is [tex]\dfrac{10.08\times10^{-18}\hat{i}}{2295.2}-\dfrac{7.2\times10^{-18}\hat{j}}{2295.2}-\dfrac{14.4\times10^{-18}\hat{k}}{2295.2}[/tex]

Explanation:

Given that,

Location of charge[tex]r_{1} = <4.00\times10^{-9},-3.00\times10^{-9},-6.00\times10^{-9}>/ m[/tex]

Location of electric field [tex]r_{12} = <-3.00\times10^{-9},2.00\times10^{-9},4.00\times10^{-9}>/ m[/tex]

We nee to calculate the distance

Using relation of distance

[tex]\vec{r}=((-3-4)\hat{i}+(2-(-3))\hat{j}+(4-(-6))\hat{k})\times10^{-9}[/tex]

[tex]\vec{r}=(-7\hat{i}+5\hat{j}+10\hat{k})\times10^{-9}[/tex]

We need to calculate the electric field

Using formula of electric field

[tex]E=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{q}{r^3}\times\vec{r}[/tex]

Put the value into the formula

[tex]E=\dfrac{9\times10^{9}\times(1.6\times10^{-19})\times((-7\hat{i}+5\hat{j}+10\hat{k})\times10^{-9})}{(\sqrt{(-7)^2+(5)^2+(10)^2})^3}[/tex]

[tex]E= \dfrac{-1.44\times10^{-9}((-7\hat{i}+5\hat{j}+10\hat{k})\times10^{-9}))}{2295.2}[/tex]

[tex]E=\dfrac{10.08\times10^{-18}\hat{i}}{2295.2}-\dfrac{7.2\times10^{-18}\hat{j}}{2295.2}-\dfrac{14.4\times10^{-18}\hat{k}}{2295.2}[/tex]

Hence, The electric field is [tex]\dfrac{10.08\times10^{-18}\hat{i}}{2295.2}-\dfrac{7.2\times10^{-18}\hat{j}}{2295.2}-\dfrac{14.4\times10^{-18}\hat{k}}{2295.2}[/tex]

Answer:

What he said /\

                       |

Explanation: