Respuesta :
Answer:
- [tex]\vec{F}_{cable_1} = (-19.245 \ lbf ,0, 33.333 \ lbf)[/tex]
- [tex]\vec{F}_{cable_2} = (9.622 \ lbf , 13.608 \ lbf ,33.333 \ lbf)[/tex]
- [tex]\vec{F}_{cable_3} = (9.622 \ lbf , -13.608 \ lbf ,33.333 \ lbf)[/tex]
Explanation:
The mass of the load is
[tex]m_{load} = 100 \ lb[/tex]
As the mass hangs, the cables must be tight, so, we can obtain the vector parallel to the cable as:
[tex]\vec{r}_{cable} = \vec{r}_{anchored} - \vec{r}_{load} [/tex]
where [tex]\vec{r}_{load}[/tex] is the position of the load and [tex]\vec{r}_{anchored}[/tex] is the point where the cable is anchored.
So, for our cables
[tex]\vec{r}_{cable_1} = (-4,0,0) - (0,0,-4\sqrt{3})=(-4,0,4\sqrt{3})[/tex]
[tex]\vec{r}_{cable_2} = (2,2\sqrt{3},0) - (0,0,-4\sqrt{3})=(2,2\sqrt{2},4\sqrt{3})[/tex]
[tex]\vec{r}_{cable_3} = (2,-2\sqrt{3},0) - (0,0,-4\sqrt{3})=(2,-2\sqrt{2},4\sqrt{3})[/tex]
We know that the forces must be in this directions, so we can write
[tex]\vec{F}_i=k_i \vec{r}_{cable_i}[/tex]
We also know, as the system is in equilibrium, the sum of the forces must be zero:
[tex]\vec{F}_{cable_1}+\vec{F}_{cable_2}+\vec{F}_{cable_3}+\vec{W}=0[/tex]
where [tex]\vec{W}[/tex] is the weight,
[tex]\vec{W} = (0,0,-100 \ lbf)[/tex]
So, we get:
[tex]k_1 (-4,0,4\sqrt{3}) + k_2 (2,2\sqrt{2},4\sqrt{3}) + k_3 (2,-2\sqrt{2},4\sqrt{3}) + (0,0,-100 \ lbf) = (0,0,0)[/tex]
This gives us the following equations:
- [tex]-4 \ k_1 + 2 \ k_2 + 2 \ k_3 = 0[/tex]
- [tex]2\sqrt{2} \ k_2 -2\sqrt{2} \ k_3 = 0[/tex]
- [tex]4\sqrt{3} \ k_1 + 4\sqrt{3} \ k_2 + 4\sqrt{3} \ k_3 -100 \ lbf = 0[/tex]
From equation [2] is clear that [tex]k_2 = k_3[/tex], we can see that
[tex]2\sqrt{2} \ k_2 = 2\sqrt{2} \ k_3[/tex]
[tex]\frac{2\sqrt{2} \ k_2}{2\sqrt{2} } = \frac{2\sqrt{2} \ k_3}{2\sqrt{2} }[/tex]
[tex]k_2 = k_3[/tex]
Now, putting this in equation [1]
[tex]-4 \ k_1 + 2 \ k_2 + 2 \ k_3 = -4 \ k_1 + 2 \ k_3 + 2 \ k_3 = -4 \ k_1 + 4 \ k_3 = 0[/tex]
[tex] 4 \ k_1 = 4 \ k_3 [/tex]
[tex] \ k_1 = \ k_3 [/tex]
Taking this result to the equation [3]
[tex]4\sqrt{3} \ k_1 + 4\sqrt{3} \ k_2 + 4\sqrt{3} \ k_3 -100 \ lbf = 0[/tex]
[tex]4\sqrt{3} \ k_3 + 4\sqrt{3} \ k_3 + 4\sqrt{3} \ k_3 = 100 \ lbf [/tex]
[tex]3 * (4\sqrt{3} \ k_3) = 100 \ lbf [/tex]
[tex] k_3 = \frac{100 \ lbf}{ 12 \sqrt{3}} [/tex]
[tex] k_1 = k_2 = k_3 = \frac{100 \ lbf}{ 12 \sqrt{3}} [/tex]
So, the forces are:
[tex]\vec{F}_{cable_1} = k_1 (-4,0,4\sqrt{3})[/tex]
[tex]\vec{F}_{cable_1} = \frac{100 \ lbf}{ 12 \sqrt{3}} (-4,0,4\sqrt{3})[/tex]
[tex]\vec{F}_{cable_1} = (-\frac{100 \ lbf}{ 3 \sqrt{3}},0,\frac{100 \ lbf}{3})[/tex]
[tex]\vec{F}_{cable_1} = (-19.245 \ lbf ,0, 33.333 \ lbf)[/tex]
[tex]\vec{F}_{cable_2} = k_2 (2,2\sqrt{2},4\sqrt{3})[/tex]
[tex]\vec{F}_{cable_2} = \frac{100 \ lbf}{ 12 \sqrt{3}} (2,2\sqrt{2},4\sqrt{3})[/tex]
[tex]\vec{F}_{cable_2} = (9.622 \ lbf , 13.608 \ lbf ,33.333 \ lbf)[/tex]
[tex]\vec{F}_{cable_3} = k_3 (2,-2\sqrt{2},4\sqrt{3})[/tex]
[tex]\vec{F}_{cable_3} = \frac{100 \ lbf}{ 12 \sqrt{3}} (2,-2\sqrt{2},4\sqrt{3})[/tex]
[tex]\vec{F}_{cable_3} = (9.622 \ lbf , -13.608 \ lbf ,33.333 \ lbf)[/tex]