Si la suma de las inversas de las raíces de la ecuación: x^2-mx+1=0, es igual a la inversa de la suma de las raíces ¿qué valor asume «m»?

Respuesta :

Let [tex]x_1, x_2[/tex] be the two roots. The claim is that

[tex]\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{x_1+x_2}[/tex]

We can rewrite this expression as

[tex]\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{x_1+x_2}[/tex]

Now, recall that if the leading term is 1, then you can think of a quadratic equation as

[tex]x^2-sx+p=0[/tex]

i.e. the linear coefficient is the opposite of the sum of the roots, and the constant term is the product of the roots. In other words, we have

[tex]x_1+x_2=m,\quad x_1x_2=1[/tex]

Substitute these values in the equation above to have

[tex]\dfrac{m}{1}=\dfrac{1}{m}[/tex]

Which leads to

[tex]m^2=1 \iff m=\pm 1[/tex]