The table represents an exponential function. A 2-column table has 4 rows. The first column is labeled x with entries 1, 2, 3, 4. The second column is labeled y with entries three-halves, nine-eigths, StartFraction 27 Over 32 EndFraction, StartFraction 81 Over 128 EndFraction. What is the multiplicative rate of change of the function? Two-thirds Three-fourths Four-thirds Three-halves

Respuesta :

Answer:

3/4

Step-by-step explanation:

x |  y

1  | 3/2

2 | 9/8

3 | 27/32

4 |  81/128

[tex]\frac{\frac{9}{8}}{\frac{3}{2}}=\frac{9}{8} \div \frac{3}{2}=\frac{9}{8} \cdot \frac{2}{3}=\frac{18}{24}=\frac{18 \div 3}{24 \div 3}=\frac{6}{8}=\frac{6 \div 2}{8 \div 2}=\frac{3}{4}[/tex]

So the multiplicative rate of change of this function is [tex]\frac{3}{4}[/tex] .

Answer:

Option B.

Step-by-step explanation:

The given table is

x           y

1        [tex]\frac{3}{2}[/tex]

2        [tex]\frac{9}{8}[/tex]

3        [tex]\frac{27}{32}[/tex]

4        [tex]\frac{81}{128}[/tex]

We need to find the multiplicative rate of change of the function.

Let multiplicative rate of change is k, then

[tex]k=\dfrac{a_2}{a_1}[/tex]

[tex]k=\dfrac{\frac{9}{8}}{\frac{3}{2}}[/tex]

[tex]k=\dfrac{9}{8}\times \dfrac{2}{3}[/tex]

[tex]k=\dfrac{3}{4}[/tex]

Therefore, the correct option is B.