Respuesta :
Answer:
3/4
Step-by-step explanation:
x | y
1 | 3/2
2 | 9/8
3 | 27/32
4 | 81/128
[tex]\frac{\frac{9}{8}}{\frac{3}{2}}=\frac{9}{8} \div \frac{3}{2}=\frac{9}{8} \cdot \frac{2}{3}=\frac{18}{24}=\frac{18 \div 3}{24 \div 3}=\frac{6}{8}=\frac{6 \div 2}{8 \div 2}=\frac{3}{4}[/tex]
So the multiplicative rate of change of this function is [tex]\frac{3}{4}[/tex] .
Answer:
Option B.
Step-by-step explanation:
The given table is
x y
1 [tex]\frac{3}{2}[/tex]
2 [tex]\frac{9}{8}[/tex]
3 [tex]\frac{27}{32}[/tex]
4 [tex]\frac{81}{128}[/tex]
We need to find the multiplicative rate of change of the function.
Let multiplicative rate of change is k, then
[tex]k=\dfrac{a_2}{a_1}[/tex]
[tex]k=\dfrac{\frac{9}{8}}{\frac{3}{2}}[/tex]
[tex]k=\dfrac{9}{8}\times \dfrac{2}{3}[/tex]
[tex]k=\dfrac{3}{4}[/tex]
Therefore, the correct option is B.