Select the correct answer.
How many real solutions exist for this system of equations?

y = -x + 1

y = -x2 + 4x − 2

A.
zero
B.
one
C.
two
D.
infinite

Respuesta :

Answer:

Option C. The given system has two solutions.

Solution:

The given equations are,

[tex]y = -x + 1[/tex]

[tex]y = -x^2 + 4x-2[/tex]

From the equation we can say,

[tex]-x+1 = -x^2+ 4x-2[/tex]

[tex]\Rightarrow-x^{2}+4 x-2+x-1=0[/tex]

[tex]\Rightarrow-x^{2}+5 x-3=0[/tex]

We know that the quadratic formula to solve this,

x has two values which are [tex]\frac{(-b+\sqrt{b^{2}-4 a c})}{2 a} \ and \ \frac{(-b-\sqrt{\left.b^{2}-4 a c\right)}}{2 a}[/tex]

Here, a = (-1), b = 5 , c = -3

So, [tex]x=\frac{(-5+\sqrt{(5)^{2}-4 x(-1)} \times(-3))}{2 \times(-1)}=\frac{(-5+\sqrt{25-12})}{-2}=\frac{(-5+\sqrt{13})}{-2}=\frac{(5-\sqrt{13})}{2}[/tex]

Again [tex]x=\frac{(5+\sqrt{13})}{2}[/tex]

Hence, x has two solutions.  

Answer:

Two

Step-by-step explanation:

I got it right, see image

Ver imagen ariruanjohnson