Respuesta :

Answer:

Step-by-step explanation:

1) a² - b² = (a + b)(a- b)

2) a³ + b³ = a³ + 3a²b + 3ab² + b³

3) a³ - b³ = a³ - 3a²b + 3ab² - b³

5) x⁴ - 36 = (x²)² - 6² = (x² + 6) (x² - 6)

6)64c³ +  1 = (4c)³ + 1³ = (4c)³ + 3(4c)²(1) + 3(4c)(1)³ + 1³

                  = 64c³ + 3(16c²) + 12c +1  

                   = 64c³ + 48c² +12c + 1

7) k³ - 27 = k³- 3³ =  (k + 3)(k - 3)

Answer:

Step-by-step explanation:

the formula for the differences of squares  a^2-b^2  = (a+b) (a-b)

The formula for Sum of Cubes a^3-b^3= (a-b)(a^2+ab+b^2)

The formula for Difference of Cubes a^3-b^3= (a-b)( a^2+ab+b^2)

You can put this as answers for 1-3

4.Multiply the answer to see if you get the original polynomial.

and also use this formula to solve question 5-12

for x^4-36 you can use differences of squares formula  a^2-b^2  = (a+b) (a-b)

we need to rewrite x^4-36 as (x^2)2 -6^2

a=x^2 and b=6

So

(x^2+6)(x^2-6)

follow same step for rest let me know if you need more help