Answer:
[tex]5F+(-9)C=160[/tex]
[tex]39^{\circ}F=3.9^{\circ}C[/tex]
Step-by-step explanation:
Let Celsius taking along x-axis and Fahrenheit taking along y- axis
From given table
[tex]C_1=-25, C_2=-20,F_1=-13,F_2=-4[/tex]
Slope formula:[tex]m=\frac{F_2-F_1}{C_2-C_1}[/tex]
[tex]m=\frac{-4+13}{-20+25}=\frac{9}{5}[/tex]
Point slope form:[tex]F-F_1=m(C-C_1)[/tex]
Now, substitute the values in the formula then we get
[tex]F-(-13)=\frac{9}{5}(C+25)[/tex]
[tex]F+13=\frac{9}{5}(C+25)[/tex]
[tex]5F+65=9C+225[/tex]
[tex]5F-9C=225-65=160[/tex]
[tex]5F-9C=160[/tex]
Substitute F=[tex]39^{\circ}[/tex]
Then, we get
[tex]39(5)-9C=160[/tex]
[tex]195-9C=160[/tex]
[tex]9C=195-160=35[/tex]
[tex]C=\frac{35}{9}=3.9^{\circ}[/tex]
Hence, [tex]39^{\circ}F=3.9^{\circ}C[/tex]