Respuesta :

Rational exponents work as follows:

[tex]a^{\frac{b}{c}}=\sqrt[c]{a^b}[/tex]

So, in your case, we have

[tex](x^3y^5)^{\frac{4}{3}} = \sqrt[3]{(x^3y^5)^4}=\sqrt[3]{x^{12}y^{20}}=\sqrt[3]{x^{12}y^{18}\cdot y^2}}=x^4y^6\sqrt[3]{y^2}[/tex]

Answer:

[tex](x3y^5)^{\frac{4}{3} \\=[(x^{3  \times \frac{4}{3}}y^{5 \times \frac{4}{3}})\\\\=x^4y^{\frac{20}{3}\\=x^4y^{\frac{18}{3}}y^{\frac{2}{3}}\\=x^4y^6\sqrt[3]{y^2}[/tex]

Step-by-step explanation: