Respuesta :

Answer:

[tex]\frac{2^{7} . 2^{5} }{16}[/tex] = 256

Step-by-step explanation:

The given expression is [tex]\frac{2^{7} . 2^{5} }{16}[/tex]

Now, the Laws of Exponents state that

1. [tex]a^{x}.a^{y}   = a^{(x+ y)}[/tex]

2. [tex]\frac{a^{x} }{a^{y} }  = a^{(x-y)}[/tex]

Now, simplifying the expression using the two laws, we get

[tex]\frac{2^{7} . 2^{5} }{16}[/tex]  = [tex]\frac{2^{7 + 5}  }{16}[/tex]

Now,  [tex]16 = 2^{4}[/tex]

So, substituting 16 with it, we get

[tex]\frac{2^{7 + 5}  }{16}[/tex] = [tex]\frac{2^{12}  }{2^{4}}[/tex]

= [tex]2^{12 - 4}  = 2^{8}[/tex]

Simplyimng this further, we get

[tex]2^{8} = 256[/tex]

[tex]\frac{2^{7} . 2^{5} }{16}[/tex] = 256