Respuesta :

Answer:

The roots of the equation are x = [tex]\frac{3+\sqrt{151}i}{10}[/tex] and x = [tex]\frac{3-\sqrt{151}i}{10}[/tex]

and there are no real roots of the equation given above

Step-by-step explanation:

To solve:

5x² − 3x + 17 = 9

or

⇒ 5x² − 3x + 17 - 9 = 0

or

⇒ 5x² − 3x + 8 = 0

Now,

the roots of the equation in the form ax² + bx + c = 0 is given as:

x = [tex]\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

in the above given equation

a = 5

b = -3

c = 8

therefore,

x = [tex]\frac{-(-3)\pm\sqrt{(-3)^2-4\times5\times8}}{2\times5}[/tex]

or

x = [tex]\frac{3\pm\sqrt{9-160}}{10}[/tex]

or

x = [tex]\frac{3+\sqrt{-151}}{10}[/tex] and x = [tex]\frac{3-\sqrt{-151}}{10}[/tex]

or

x = [tex]\frac{3+\sqrt{151}i}{10}[/tex] and x = [tex]\frac{3-\sqrt{151}i}{10}[/tex]

here i = √(-1)

Hence,

The roots of the equation are x = [tex]\frac{3+\sqrt{151}i}{10}[/tex] and x = [tex]\frac{3-\sqrt{151}i}{10}[/tex]

and there are no real roots of the equation given above