Respuesta :

Answer:

(a) x+3

(b) [tex]x^2+3x+9[/tex]

(c) [tex](x+3)(x^2+9)[/tex]

Step-by-step explanation:

We have given that

(a) [tex]\frac{x^2-9}{x-3}[/tex]

From the algebraic identity we know that

[tex]a^2-b^2=(a+b)(a-b)[/tex]

So [tex]\frac{x^2-9}{x-3}=\frac{(x+3)(x-3)}{x-3}=x+3[/tex]

(b) [tex]\frac{x^3-27}{x-3}[/tex]

We know the algebraic identity

[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

So [tex]\frac{x^3-27}{x-3}=\frac{x^3-3^3}{x-3}=\frac{(x-3)(x^2+3x+9)}{x-3}=x^2+3x+9[/tex]

(c) We have given [tex]\frac{x^4-81}{x-3}[/tex]

We know the algebraic identity

[tex]a^2-b^2=(a+b)(a-b)[/tex]

[tex]\frac{x^4-81}{x-3}=\frac{(x^2)^2-(3^2)^2}{x-3}=\frac{(x^2-9)(x^2+9)}{x-3}=\frac{(x+3)(x-3)(x^2+9)}{x-3}=(x+3)(x^2+9)[/tex]