One factor of f(x) = x3 − 12x2 + 47x − 60 is (x − 5). What are the zeros of the function?

5, −4, −3
5, −4, 3
5, 4, −3
5, 4, 3

Respuesta :

Answer:

The correct option is D) 5, 4, 3

Step-by-step explanation:

Consider the provided function.

[tex]f(x) = x^3 -12x^2 + 47x - 60[/tex]

It is given that one factor is (x-5) and we need to find the zeros of the function.

That means x-5 will completely divide the provided polynomial.

[tex]\frac{x^3 -12x^2 + 47x - 60}{x-5}[/tex]

The long division is shown in figure below.

[tex]\frac{x^3-12x^2+47x-60}{x-3}=x^2-7x+12[/tex]

Simplify the expression [tex]x^2-7x+12[/tex]

[tex]x^2-4x-3x+12[/tex]

[tex]x(x-4)-3(x-4)[/tex]

[tex](x-4)(x-3)[/tex]

[tex](x-4)(x-3)[/tex]

Therefore, the required polynomial can be written as: [tex]f(x)=(x-3)(x-4)(x-5)[/tex]

Now find the zeros by substituting f(x)=0.

[tex](x-3)(x-4)(x-5)=0[/tex]

[tex]x-3=0\ or\ x-4=0\ or\ x-5=0[/tex]

[tex]x=3\ or\ x=4\ or\ x=5[/tex]

Hence, the correct option is D) 5, 4, 3

Ver imagen FelisFelis

Answer:

D) 5, 4, 3

Step-by-step explanation:

I took the quiz and got a 100%