Answer:
[tex]\frac{1}{3\sqrt{16}}[/tex] = [tex](16)^{\frac{-1}{2}}.3^{-1}[/tex]
Step-by-step explanation:
We have given the expression in radical form as [tex]\frac{1}{3\sqrt{16}}[/tex]
We have to convert this radical form in exponential form
We know that [tex]\frac{1}{3\sqrt{16}}[/tex] can be written as [tex]\frac{1}{3\sqrt{16}}=\frac{1}{3}\times \frac{1}{(16)^{\frac{1}{2}}}[/tex]
Now if we write [tex]\frac{1}{3}[/tex] in exponential form then we can write as [tex]3^{-1}[/tex] ( property of exponent )
And [tex]\frac{1}{(16)^{\frac{1}{2}}}=(16)^{\frac{-1}{2}}[/tex]
So [tex]\frac{1}{3\sqrt{16}}[/tex] = [tex](16)^{\frac{-1}{2}}.3^{-1}[/tex]