Respuesta :

Answer:

1728

Step-by-step explanation:

We can write the expression as:

[tex]144^{3/2}[/tex] = [tex]12^{2X(3/2)}[/tex]

So,

[tex]12^{2X(3/2)}[/tex] = [tex]12^{3}[/tex].

Which is 1728.

Answer:

[tex]144^{\frac{3}{2} }=1,728[/tex]

Step-by-step explanation:

The given expression is

[tex]144^{\frac{3}{2} }[/tex]

We know that every fractional power can be transformed into a root if we use the following property

[tex]x^{\frac{a}{b} } =\sqrt[b]{x^{a} }[/tex]

Where [tex]x=144[/tex], [tex]a=3[/tex] and [tex]b=2[/tex], replacing this values we have

[tex]144^{\frac{3}{2} }=\sqrt{144^{3} } =(\sqrt{144} )^{3} =12^{3}= 1,728[/tex]

Therefore, the given power is equivalent to 1,728.

Remember that you need to use the right properties to simplify an algebraic expression. In this case we had a power with a fractional exponent, so we applied the property about it.