a 0.04kg ball tied to a string moves in a circle that has a radius of 0.70 m. If the ball is accelerating 43.2m/s, what is the tangential velocity of the ball?​

Respuesta :

Answer:

Tangential Velocity = 30.24 m/s

Explanation:

Given that,

Mass of ball, m = 0.04 Kg

Length of the string, r = 0.70 m

Acceleration of the ball, a = 43.2 m/s²

The tangential velocity of ball, V = ?

The centripetal force is given by the relation

        Fc = mV²/r  newton

where,   m - mass of body

              V - tangential velocity of body

               r - radius of the trajectory

Force applied on the ball to rotate on a circular path

                F = m x a newton

The applied force is equal to centripetal force.

So, equalizing the force equations

                     m x a = m V²/r

Therefore

                     V² = a x r

                      V = [tex]\sqrt{a X r}[/tex]

Substituting the values

                       V = [tex]\sqrt{43.2 X 0.70}[/tex]

                        V = 30.24 m/s

So, the tangential velocity of the ball is 30.24 m/s