Respuesta :

Answer:

The required prove is shown below:

Step-by-step explanation:

Consider the provided information

P(A) = 0.4 and P(B) = 0.7

We know that:

[tex]P(A\cup B)=P(A)+P(B)-P(AB)[/tex]

The maximum value of [tex]P(A\cup B)[/tex] is less than or equal to 1.

[tex]P(A\cup B)\leq 1[/tex]

[tex]P(A)+P(B)-P(AB)\leq 1[/tex]

[tex]0.4+0.7-P(AB)\leq 1[/tex]

[tex]1.1-P(AB)\leq 1[/tex]

[tex]P(AB)\geq 0.1[/tex]......(1)

Also [tex]P(A\cup B)\geq P(B)[/tex]

Now substitute the respective values.

[tex]P(A)+P(B)-P(AB)\geq P(B)[/tex]

[tex]0.4-P(AB)\geq 0[/tex]

[tex]P(AB)\leq 0.4[/tex].....(2)

Now from equation 1 and 2 we get.

[tex]0.1\leq P(AB)\leq 0.4[/tex]

Hence, proved