Respuesta :

Answer:

The lowest form of the fraction is [tex](\frac{x-3}{x-2} )^{2}[/tex]

Step-by-step explanation:

Here, the given equation is

[tex]\frac{(x-3)}{(x^{2} -4)} \times \frac{(x^{2} - x - 6) }{(x-2)}[/tex]

Now, by ALGEBRAIC IDENTITIES, we know that:

[tex]a^{2} - b^{2}  = (a-b)(a+b)[/tex]

Here, [tex]( x^{2} -4) = (x^{2}  - (2)^{2} ) = (x-2)(x+2)[/tex]

Also, [tex]x^{2} - x -6 = (x-3)(x+2)[/tex] (by splitting the middle term)

So, the given expression becomes:

[tex]\frac{(x-3)}{(x^{2} -4)} \times \frac{(x^{2} - x - 6) }{(x-2)}[/tex]  = [tex]\frac{(x-3)}{(x-2)(x+ 2)} \times \frac{(x-3)(x+2) }{(x-2)}[/tex]

or, the expression becomes [tex]\frac{(x-3)}{(x-2)(x+ 2)} \times \frac{(x-3)(x+2) }{(x-2)}[/tex]

= [tex]\frac{(x-3)^{2} }{(x-2)^{2} }  = (\frac{x-3}{x-2} )^{2}[/tex]

So,the lowest form of the fraction is [tex](\frac{x-3}{x-2} )^{2}[/tex]