Respuesta :

Answer:

The square roots satisfies the equation

Step-by-step explanation:

[tex]\sqrt{-5}=\sqrt{5\times -1}\\ =\sqrt{5}\times \sqrt{-1}\\ =2.23606i[/tex]

As the square root of negative 1 is not real it is denoted by

[tex]\sqrt{-1}=i[/tex]

In the given equation

[tex]x^2+5=0\\\Rightarrow x^2=-5\\\Rightarrow x=\sqrt{-5}\\\Rightarrow x=\sqrt{5\times -1}\\\Rightarrow x=\sqrt{5}\times \sqrt{-1}\\\Rightarrow x=2.23606i[/tex]

So, the square roots satisfies the equation.

Answer:

The root of -5 is +√5i and -√5i.

Step-by-step explanation:

Given data in the question is -5.

To find:-

Square roots of -5.

Solution:-

±√-5

±√5*√-1

⇒±√5i        (√-1=i(iota)

Given Equation

[tex]x^2+5=0\\x^2=-5\\x=\sqrt{-5} \\[/tex] and [tex]x=-\sqrt{-5} \\x=\sqrt{5}*\sqrt{-1}\\ x=\sqrt{5}i[/tex] and [tex]x=-\sqrt{5}i[/tex]