Respuesta :
Answer:
The square roots satisfies the equation
Step-by-step explanation:
[tex]\sqrt{-5}=\sqrt{5\times -1}\\ =\sqrt{5}\times \sqrt{-1}\\ =2.23606i[/tex]
As the square root of negative 1 is not real it is denoted by
[tex]\sqrt{-1}=i[/tex]
In the given equation
[tex]x^2+5=0\\\Rightarrow x^2=-5\\\Rightarrow x=\sqrt{-5}\\\Rightarrow x=\sqrt{5\times -1}\\\Rightarrow x=\sqrt{5}\times \sqrt{-1}\\\Rightarrow x=2.23606i[/tex]
So, the square roots satisfies the equation.
Answer:
The root of -5 is +√5i and -√5i.
Step-by-step explanation:
Given data in the question is -5.
To find:-
Square roots of -5.
Solution:-
⇒±√-5
⇒±√5*√-1
⇒±√5i (√-1=i(iota)
Given Equation
[tex]x^2+5=0\\x^2=-5\\x=\sqrt{-5} \\[/tex] and [tex]x=-\sqrt{-5} \\x=\sqrt{5}*\sqrt{-1}\\ x=\sqrt{5}i[/tex] and [tex]x=-\sqrt{5}i[/tex]