Respuesta :
Answer:
Step-by-step explanation:
log3(x^2)-log3(x+4)=4
Log 3(x^2/x+4)=4 -Combine the logs
x^2/x+4 = 3^4 - Use the relationship Logb(y)=x =>b^x=y
x^2/x+4 = 81
x^2= 81^(x+4)
x^2=81x+324
x^2-81x-324=0
Solving for x using the property x=-b-/+[tex]\sqrt{x} b^2-4ac]/ 2a
=(81 ±√(81)^2-4^11^324)/2
= (81±√6561-1296)/2
=(81±88.63)/2
= (81+88.63)/2
=84.81
[tex]\bf \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( \frac{x}{y}\right)\implies \log_a(x)-\log_a(y) \end{array}~\hfill \begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad \stackrel{\textit{we'll use this one}}{a^{log_a x}=x} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log_3(x^2)-\log_3(x+4)=4\implies \log_3\left( \cfrac{x^2}{x+4} \right)=4[/tex]
[tex]\bf 3^{\log_3\left( \frac{x^2}{x+4} \right)}=3^4\implies \cfrac{x^2}{x+4}=3^4\implies \cfrac{x^2}{x+4}=81\implies x^2=81x+324 \\\\\\ x^2-81x-324=0\implies x = \cfrac{81\pm \sqrt{(-81)^2-4(1)(-324)}}{2(1)} \\\\\\ x = \cfrac{81\pm \sqrt{6561+1296}}{2}\implies x = \cfrac{81\pm \sqrt{7857}}{2}\implies x = \begin{cases} x \approx -3.81986\\\\ x \approx 84.8199~~\checkmark \end{cases}[/tex]