Respuesta :

Answer:

The sum of the geometric progression is [tex]S_n=(x^{31}+1)/(x+1)[/tex].

Step-by-step explanation:

Given data in the question:-      

[tex]1-x+x^2-x^3+x^4+........+x^{30}[/tex]

We have to find the sum of Geometric Progression.

Solution:-      

As we know the sum of geometric progression is

[tex]S_n=a(r^n-1)/r-1\\[/tex]

Where r is the common ratio defined as [tex]r=T_n/T_{n-1}[/tex]

[tex]r=-x/1[/tex]

n(no of terms)=31

[tex]S_n=1((-x)^{31}-1)/(-x-1)\\S_n=-(x^{31}+1)/-(x+1)\\S_n=(x^{31}+1)/(x+1)[/tex]