Respuesta :

Answer:

logₓ(y) = [tex]\frac{\log(y)}{\log(x)}[/tex]

[tex]\frac{\log(b)}{\log(a)}\times\frac{\log(a)}{\log(b)}[/tex]

or

= 1

Step-by-step explanation:

Data provided:

a ≠ 1 and b ≠ 1

To prove [tex]\log_a(b).\log_b(a)=1[/tex]

RHS = 1

LHS = [tex]\log_a(b).\log_b(a)[/tex]

Now,

We have the property of the log function as:

logₓ(y) = [tex]\frac{\log(y)}{\log(x)}[/tex]

applying the above property on the LHS side to solve LHS, we get

LHS = [tex]\frac{\log(b)}{\log(a)}\times\frac{\log(a)}{\log(b)}[/tex]

or

LHS = 1

Since,

LHS = 1 is equal to the RHS = 1

Hence, proved that  [tex]\log_a(b).\log_b(a)=1[/tex]