Answer:
[tex]3 + \dfrac{2}{log_{10}5}[/tex]
Step-by-step explanation:
given,
log₅ (12500)
using logarithmic identity
logₐ a = 1
logₐ x³ = 3 logₐ x
log (ab) = log a + log b
logₐ x = [tex]\dfrac{1}{log_x a}[/tex]
now,
log₅ (12500)
log₅ (5³ × 100 )
log₅ (5³) + log₅(100)
3 log₅ (5) + log₅ (10²)
3 + 2 log₅ (10)
[tex]3 + \dfrac{2}{log_{10}5}[/tex]
hence, the required solution is given above.