The activation energy for the isomerization of methyl isonitrile is 160 kJ/mol.Part ACalculate the fraction of methyl isonitrile molecules that have an energy of 160.0 kJ or greater at 496 K .f1=Part BCalculate this fraction for a temperature of 528 K .f2=Part CWhat is the ratio of the fraction at 528 K to that at 496 K ?f2/f1=

Respuesta :

Answer:

(a) [tex]F_{496/ K}=1.411\times 10^{-17}[/tex]

(b) [tex]F_{528/ K}=1.482\times 10^{-16}[/tex]

(c) [tex]\frac {F_{528/ K}}{F_{496/ K}}=10.5[/tex]

Explanation:

Using the expression,

[tex]{k}=Ae^{-\dfrac{E_{a}}{RT}}[/tex]

Where,

[tex]k\ is\ the\ rate\ constant\ at\ T[/tex]

[tex]E_a[/tex] is the activation energy

A is the pre-exponential factor

R is Gas constant having value = 8.314 J / K mol  

The factor, [tex]e^{-\dfrac{E_{a}}{RT}}[/tex]  is the fraction of molecules which have value equal to or grater than activation energy.

Thus,

[tex]F=e^{-\dfrac{E_{a}}{RT}}[/tex]

(a) Given, [tex]E_a[/tex] = 160.0 kJ/mol = 160000 J/mol (As 1 kJ = 1000 J)

T = 496 K

Thus, applying values as:

[tex]F=e^{-\dfrac{160000}{8.314\times 496}}[/tex]

[tex]F=\frac{1}{7.08749\times 10^{16}}[/tex]

[tex]F_{496/ K}=1.411\times 10^{-17}[/tex]

(b) Given, [tex]E_a[/tex] = 160.0 kJ/mol = 160000 J/mol (As 1 kJ = 1000 J)

T = 528 K

Thus, applying values as:

[tex]F=e^{-\dfrac{160000}{8.314\times 528}}[/tex]

[tex]F=\frac{1}{6.74917\times 10^{15}}[/tex]

[tex]F_{528/ K}=1.482\times 10^{-16}[/tex]

(c) Ratio :

[tex]\frac {F_{528/ K}}{F_{496/ K}}=\frac{1.482\times 10^{-16}}{1.411\times 10^{-17}}=10.5[/tex]