Respuesta :

Answer:

x = 0.125

Step-by-step explanation:

Given:

log₃(x²) = 1

Now,

From the properties of log

logₓ (z)= [tex]\frac{\log(z)}{\log(x)}[/tex]  (where the base of the log is equal for both numerator and the denominator)

also,

log(xⁿ) = n × log(x)

thus,

using the above properties, we can deduce the results as:

logₓ(y) = n is equivalent to y = xⁿ

therefore,

the given equation can be deduced as:

log₃(x²) = 1

or

2log₃(x) = 1

or

log₃(x) = 0.5

into,

x = 0.5³

or

x = 0.125

Answer:

x = 9

Step-by-step explanation:

given,                                        

log₃ x² = - 4              

using logarithmic identity

logₐ x = b  

x = aᵇ  

log xᵃ = a log x                                            

                   

converting into exponential form as the base is 3

log₃ x² = 4

2 log₃ x =  4

log₃ x =  2

converting

x = 3²

x = 9                        

Hence, the solution of X will be equal to x = 9