Respuesta :

Answer:

[tex]x=\frac{4*(2+e)}{e-2}[/tex]

Step-by-step explanation:

Let's rewrite the left side keeping in mind the next propierties:

[tex]log(\frac{1}{x} )=-log(x)[/tex]

[tex]log(x*y)=log(x)+log(y)[/tex]

Therefore:

[tex]log(2*(x^{2} -16))+log(\frac{1}{(x-4)^{2} })=1\\ log(\frac{2*(x^{2} -16)}{(x-4)^{2}})=1[/tex]

Now, cancel logarithms by taking exp of both sides:

[tex]e^{log(\frac{2*(x^{2} -16)}{(x-4)^{2}})} =e^{1} \\\frac{2*(x^{2} -16)}{(x-4)^{2}}=e[/tex]

Multiply both sides by [tex](x-4)^{2}[/tex] and using distributive propierty:

[tex]2x^{2} -32=16e-8ex+ex^{2}[/tex]

Substract [tex]16e-8ex+ex^{2}[/tex] from both sides and factoring:

[tex]-(x-4)*(-8-4e-2x+ex)=0[/tex]

Multiply both sides by -1:

[tex](x-4)*(-8-4e-2x+ex)=0[/tex]

Split into two equations:

[tex]x-4=0\hspace{3}or\hspace{3}-8-4e-2x+ex=0[/tex]

Solving for [tex]x-4=0[/tex]

Add 4 to both sides:

[tex]x=4[/tex]

Solving for [tex]-8-4e-2x+ex=0[/tex]

Collect in terms of x and add [tex]4e+8[/tex] to both sides:

[tex]x(e-2)=4e+8[/tex]

Divide both sides by e-2:

[tex]x=\frac{4*(2+e)}{e-2}[/tex]

The solutions are:

[tex]x=4\hspace{3}or\hspace{3}x=\frac{4*(2+e)}{e-2}[/tex]

If we evaluate x=4 in the original equation:

[tex]log(0)-log(0)=1[/tex]

This is an absurd because log (x) is undefined for [tex]x\leq 0[/tex]

If we evaluate [tex]x=\frac{4*(2+e)}{e-2}[/tex] in the original equation:

[tex]log(2*((\frac{4e+8}{e-2})^2-16))-log((\frac{4e+8}{e-2}-4)^2)=1[/tex]

Which is correct, therefore the solution is:

[tex]x=\frac{4*(2+e)}{e-2}[/tex]