4. Use the process outlined in the lesson to approximate the number 2√3. Use the approximation √3 ≈ 1.732 050 8.
b. Find a sequence of five intervals that contain 2√3 whose endpoints get successively closer to 2√3. Write your
intervals in the form 2???????? < 2√3 < 2ss for rational numbers ???????? and ss.

Respuesta :

Answer:

sequence of five intervals

(1) 2  < [tex]2^{\sqrt{3} }[/tex]   < [tex]2^{2}[/tex]

(2) [tex]2^{1.7}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.8}[/tex]

(3) [tex]2^{1.73}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.74}[/tex]

(4) [tex]2^{1.732}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.733}[/tex]

(5) [tex]2^{1.7320}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.7321}[/tex]

Step-by-step explanation:

as per question given data      

√3 ≈ 1.732 050 8 

to find out      

sequence of five intervals

solution      

as we have given that √3 value that is here

√3 ≈ 1.732 050 8            ........................1

so  

when we find [tex]2^{\sqrt{3} }[/tex]           ................2

put here √3 value in equation number  2  

we get  [tex]2^{\sqrt{3} }[/tex]   that is  3.322    

so    

sequence of five intervals

(1) 2  < [tex]2^{\sqrt{3} }[/tex]   < [tex]2^{2}[/tex]

(2) [tex]2^{1.7}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.8}[/tex]

(3) [tex]2^{1.73}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.74}[/tex]

(4) [tex]2^{1.732}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.733}[/tex]

(5) [tex]2^{1.7320}[/tex]  < [tex]2^{\sqrt{3} }[/tex]    < [tex]2^{1.7321}[/tex]